波形板表面上雾沫的扩散、雾沫的重力沉降使雾沫形成较大的液滴并随气流向前运动至波形板转弯处,由于转向离心力及其与波形板的摩擦作用、吸附作用和液体的表面张力使得液滴越来越大,直到集聚的液滴大到其自身产生的重力**过气体的上升力与液体表面张力的合力时,液滴就从波形板表面上被分离下来。除雾器波形板的多折向结构增加了雾沫集的机会,玻璃钢除雾器,未被除去的雾沫在下一个转弯处经过相同的作用而集,这样反复作用,丝网除雾器,从而大大提高了除雾效率。气体通过波形板除雾器后,基本上不含雾沫。 除雾器系统由除雾器本体及冲洗系统组成。 一般为二级不同规格的除雾器本体、冲洗水管道、喷嘴、支撑架、支撑梁及相关连接、固定件、密封件等组成
除雾器是一种在工业生产和环保产业中广泛使用的气--液分离必不可少的装置。生产的玻璃钢除雾器具有分离、阻力降小、允许气流速度大、防堵功能强的新型脱硫除雾器成为工业生产中迫切需要解决的问题。当含有雾沫的气体以一定速度流经除雾器时,由于气体的惯性撞击作用,雾沫与波形板相碰撞而被附着在波形板表面上。
脱硫后的烟气以一定的速度流经除雾器,烟气被快速、连续改变运动方向,因离心力和惯性的作用,烟气内的雾滴撞击到除雾器叶片上集下来,雾滴汇集形成水流,因重力的作用,下落至浆液池内,实现了气液分离,使得流经除雾器的烟气达到除雾要求后排出。
除雾器的除雾效率随气流速度的增加而增加,这是由于流速高,作用于雾滴上的惯性力大,有利于气液的分离。但是,流速的增加将造成系统阻力增加,也使能耗增加。而且流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。通常将通过除雾器断面的且又不致二次带水时的烟气流速定义为临界流速,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式等因素有关。设计流速一般选定在3.5—5.5m/s。